Discovery of the Teutonic Bore Jaguar and Bentley Volcanic Massive Sulphide Deposits.

Presenter Name Reg Beaton (Consultant) 24th February 2015

CET DISCOVERY DAY
Cautionary Notes and Disclaimer

- This presentation has been prepared with the assistance Independence Group NL (“IGO”) (ABN 46 092 786 304). It should not be considered as an offer or invitation to subscribe for or purchase any securities in IGO or as an inducement to make an offer or invitation with respect to those securities in any jurisdiction.

- This presentation contains general summary information about IGO. The information, opinions or conclusions expressed in the course of this presentation should be read in conjunction with IGO’s other periodic and continuous disclosure announcements lodged with the ASX, which are available on the IGO website. No representation or warranty, express or implied, is made in relation to the fairness, accuracy or completeness of the information, opinions and conclusions expressed in this presentation.

- This presentation includes forward looking information regarding future events, conditions, circumstances and the future financial performance of IGO. Often, but not always, forward looking statements can be identified by the use of forward looking words such as "may", "will", "expect", "intend", "plan", "estimate", "anticipate", "continue" and "guidance", or other similar words and may include statements regarding plans, strategies and objectives of management, anticipated production or construction commencement dates and expected costs or production outputs. Such forecasts, projections and information are not a guarantee of future performance and involve unknown risks and uncertainties, many of which are beyond IGO's control, which may cause actual results and developments to differ materially from those expressed or implied. Further details of these risks are set out below. All references to future production and production guidance made in relation to IGO are subject to the completion of all necessary feasibility studies, permit applications and approvals, construction, financing arrangements and access to the necessary infrastructure. Where such a reference is made, it should be read subject to this paragraph and in conjunction with further information about the Mineral Resources and Ore Reserves, as well as any Competent Persons’ Statements included in periodic and continuous disclosure announcements lodged with the ASX. Forward looking statements in this presentation only apply at the date of issue. Subject to any continuing obligations under applicable law or any relevant stock exchange listing rules, in providing this information IGO does not undertake any obligation to publically update or revise any of the forward looking statements or to advise of any change in events, conditions or circumstances on which any such statement is based.

- There are a number of risks specific to IGO and of a general nature which may affect the future operating and financial performance of IGO and the value of an investment in IGO including and not limited to economic conditions, stock market fluctuations, commodity demand and price movements, access to infrastructure, timing of environmental approvals, regulatory risks, operational risks, reliance on key personnel, reserve and resource estimations, native title and title risks, foreign currency fluctuations and mining development, construction and commissioning risk. The production guidance in this presentation is subject to risks specific to IGO and of a general nature which may affect the future operating and financial performance of IGO.
OUTLINE

• Geological Setting
• Discovery of the Teutonic Bore Deposit
• Discovery of the Jaguar Deposit
• Discovery of the Bentley Deposit
• The next Discovery (s)
• Exploration and Discovery Timelines and Methods
• Technological Advances and Future Discoveries
IGO MAJOR PROJECTS

- Lake McKay JV (Au)
 IGO earning 70%

- Karlawinda (Au)
 IGO 100%

- JAGUAR OPERATION (Zn-Cu-Ag)
 IGO 100%

- LONG OPERATION (Ni)
 IGO 100%

- TROPICANA GOLD MINE
 IGO 30%

- Stockman (Zn-Cu-Ag-Au)
 IGO 100%

Legend:
- Gold Projects
- Base Metal Projects
- Mines
- Development Projects
- De Beers Diamond Database sample locations
REGIONAL SETTING

Eastern Yilgarn Craton

Gindalbie Terrane (2694-2676Ma)

Bimodal HFSE-enriched rhyolites-basalts

Intermediate-felsic calc-alkaline complexes

Overlying older tholeiite-komatiite succession
GEOLOGICAL SETTING

- West dipping & facing sequence
- Rhyolite foot-wall & andesite to tholeiitic basalt hanging-wall
- Deposits ~4km apart
- Sub Seafloor replacement style hosted by sediments in a flow / intrusive dominated sequence.
- Formed close to the felsic contact

Massive sulphide lenses –pre mining

T.Bore ~1.7Mt @ 3.9% Cu, 11.1% Zn, 160g/t Ag#

Jaguar ~1.6Mt @ 3.4% Cu, 12.9% Zn, 132g/t Ag*

Bentley ~1.9Mt @ 2.2% Cu, 14.3% Zn, 198g/t Ag^
1972 GSWA releases Leonora 250k sheet showing felsic volcanic rocks on Boudie Hill.

1974: CEC sampled gossans that return anomalous Zn-Cu-Pb.

1976: Seltrust/CEC JV drill a massive sulphide lens over 320m of strike.

1981-1985: Mining at time of low metal prices
• 1973: Warramboo Gossan 4km south of TB sampled.

• 1975-78: Esso & Aquitaine drilling intersected stringer style mineralization-5.9m @ 2.2% Zn, 0.4% Pb, 58g/t Ag.

• 1984: Chevron drills an EM target 500m NW of Warramboo and misses Jaguar by ~ 50m

• We were not to know that for 18 years as there was no indication of proximity to a massive sulphide deposit.
2001: Inmet-Pilbara JV for VMS base metal exploration

Inmet defines a FLEM conductor over 1.8km long (Geophysics approach)

Diamond drilling starts at 600m centres. They were testing for a large deposit.

The first hole intersected shale. Was this the conductor?

The second hole was to test the strongest part of the conductor.
This was the 2nd Inmet Hole

- 7.7m from 485.5m @ 4.3% Cu, 0.8% Pb, 16.1% Zn, 173g/t Ag, 0.2g/t Au
JAGUAR GEOLOGY

- Massive Zn & Cu rich sulphide lens underlain by sporadic Cu-rich stringer
- Most of the footwall comprised post-mineralization gabbro & dolerite sub-seafloor sills.
- The stratigraphy had been inflated by 400m or more!
JAGUAR DISCOVERY WHY SO LONG?

- Model – Jaguar is not on the Felsic Contact!
- Technology- The 1984 Chevron drill hole lifted from planned target? Would it have hit the top of Jaguar? Did the hole test the modelled plate?
- Geological understanding- was the shale in the Chevron hole considered to have explained the EM?
- Innmet was the first company to drill deep DDH’s >250m on this target.
• Systematic in-mine drilling
• Understand the geology & drill through the post mineralization dolerite
• “Stacked” system – explore at depth between Warramboo & Jaguar split apart by post mineralization intrusive dolerite.
• Are there others at depth - South Jaguar ????
BENTLEY DISCOVERY 1977- 2008

• 1977-78: Drilling intersects anomalous Zn & Cu with visible sphalerite in altered felsic rocks south of Snowy’s Well.

• 1978-1989: Seltrust / Chevron completes FLEM and drilled into black shales –no result. Probably in the hanging-wall

• 1989: Tenement relinquished due to poor results and deep cover.

• 1989-1991: Asarco Gold only completed lag sampling in transported cover.
• 1991: MIMEX AC drilling defines a 700m long anomaly up to 1900ppm Zn and erratic Cu to 800ppm.

• FLEM defines the felsic contact and a deeper conductor to the west.

• 1992: SWD001 intersects stringer mineralization from 170m including 78m @ 0.64% Zn & 3.04g/t Ag.

• Is this the discovery? – Project Geologist gets excited and wants to keep drilling (but not the management!)

• Proposed follow-up deeper diamond hole was not completed.
• 1994-1995 Pancon AC/RC drilling redisCOVERS & extends mineralization SPRC001– 6m @ 2.4% Zn. Goldfields takeover stops exploration.

• 2003 Inmet drills an EM conductor & hits a graphitic shear zone (HW shale). Also tests for a north plunge.

• 2007 Jabiru Metals again confirms the BM target with RC drilling.

• 2008 Diamond drilling - 400m centres to >200m depth with a plan to infill to 200m centres (funding?).

• The first 3 holes completed for no result 08SWD001-003.

• Drilling postponed due to budget constraints. What budget??
• Fourth hole – 08SWD004 intersects 10.5m @ 2.4% Cu, 27.3% Zn, 1.1% Pb, 0.7g/t Au & 131g/t Ag at 370m depth.
• Global Financial Crisis (GFC)!
• Metal Prices plunged!
• 08SWD004 was to be the last hole and the team was to be retrenched!
• Jabiru Metals Ltd Board decided within one hour of notification to continue with 4 more holes to determine if there was a deposit of a minable size.
• Jaguar deposit size used as a template.
• Resource drill-out in 2009
• In-mine discoveries through systematic drilling, geological understanding and geophysics (DHEM)
 • 7.8m @ 10.1% Zn, 2.5% Cu, 99g/t Ag and 1.1g/t Au
• Understanding base metals and pathfinder elements in the regolith

• Hyperspectral mapping of alteration minerals in DDH’s - white mica and chlorite species.

• Focus on the primary geochemical halo and vectoring towards the massive sulphides.

• Understand the stratigraphy through use of litho geochemistry in AC and DDH to enhance direct observation.

• Collaboration with research groups, universities & government organizations – CSIRO, GSWA, AMIRA, ARC Linkage
Previously the Gravel Pit Prospect.

JML purchased these tenements in 2011

JHDD0003 drilled by a previous explorer.

Re-logging in 2014 suggested this hole did not reach the footwall rhyolite.

Re-entry of JHDD0003 confirmed interpretation.

6m of core drilling and

8.4m@ 9.7% Zn, 0.1% Cu, 44g/t Ag & 0.3g/t Au

Watch this Space
Surface EM was unable to detect Bentley through the regolith – FLEM, MLEM, Hi T & Low T SQUID.
False anomalies common – black shales
DHEM - in-house equipment, expertise and experience improving the effectiveness.
IP - poor depth penetration due to regolith
MIMDAS - poor anomaly definition & high cost - locally effective.
Gravity - size & depth of massive sulphides deposits and depth of regolith precludes detection.
Magnetics - issues with maghaemite masking the bedrock response.
• Preferred stratigraphy but not too focused.
• AC drilling - primary geological mapping and sampling tool.
• Multi element bedrock geochemistry.
• Strong use of pathfinder elements in both the regolith & fresh bedrock
• Hyperspectral mapping of alteration minerals – hi-Fe chlorite and white mica trends.
• Diamond drill early on 200m centres with DHEM to an appropriate RL.
<table>
<thead>
<tr>
<th>DEPOSIT / LENS</th>
<th>YEAR</th>
<th>METHOD (Primary)</th>
<th>STYLE</th>
<th>METAL</th>
<th>LOCATION</th>
<th>DEPTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teutonic Bore*</td>
<td>1976</td>
<td>Prospecting</td>
<td>Massive</td>
<td>Zn-Cu-Ag</td>
<td>Regional</td>
<td><50m</td>
</tr>
<tr>
<td>Jaguar</td>
<td>2002</td>
<td>Geophysics</td>
<td>Massive</td>
<td>Zn-Cu-Ag</td>
<td>Regional</td>
<td>400m</td>
</tr>
<tr>
<td>Daimler</td>
<td>2005</td>
<td>Geochemistry</td>
<td>Stringer</td>
<td>Cu</td>
<td>Regional</td>
<td>70m</td>
</tr>
<tr>
<td>Jaguar-Bubble</td>
<td>2007</td>
<td>Geology</td>
<td>Massive</td>
<td>Cu</td>
<td>In Mine</td>
<td>420m</td>
</tr>
<tr>
<td>Jaguar-Far Side</td>
<td>2010</td>
<td>Geology</td>
<td>Semi Massive</td>
<td>Cu</td>
<td>In Mine</td>
<td>500m</td>
</tr>
<tr>
<td>Bentley</td>
<td>2008</td>
<td>Geochemistry</td>
<td>Massive</td>
<td>Zn-Cu-Ag-Au</td>
<td>Regional</td>
<td>350m</td>
</tr>
<tr>
<td>Bentley-Comet</td>
<td>2010</td>
<td>Geology</td>
<td>Semi Massive</td>
<td>Zn-Cu-Ag-Au</td>
<td>In Mine</td>
<td>250m</td>
</tr>
<tr>
<td>Bentley-Azure</td>
<td>2012</td>
<td>Geology</td>
<td>Stringer</td>
<td>Cu-Zn-Ag</td>
<td>In Mine</td>
<td>300m</td>
</tr>
<tr>
<td>Bentley–Flying Spur</td>
<td>2010 /2014</td>
<td>Geology /Geophysics</td>
<td>Massive</td>
<td>Zn-Cu-Ag-Au</td>
<td>In Mine</td>
<td>700m</td>
</tr>
<tr>
<td>Triumph</td>
<td>2014</td>
<td>Geology/Geochemistry</td>
<td>Semi Massive</td>
<td>Zn-Ag-Au</td>
<td>Regional</td>
<td>>600?</td>
</tr>
</tbody>
</table>

1. Technology (target depth, drilling capability and cost, geophysics, geochemistry)

2. Poor understanding of targets (geology, geochemistry, regolith, geophysical)

3. Metal Prices (low = no exploration budgets)

4. Exploration shift in early 80’s to easier shallow regolith hosted gold deposits

5. Failure to follow-up on the Project Geologists recommendations & observations.

6. Corporate decisions overriding the exploration teams ability to make the discovery.

7. Timing and drill the best targets first.
New improved technology & understanding through DHEM, drilling for geology, geochemistry (PXRF), litho-geochemistry, alteration (ASD) geophysics supplemented by collaboration and research

= NEW SEARCH SPACE

= NEW DISCOVERIES